Detention Basin Design for Stream Stability

June 23, 2022

Nora Korth, P.E.

Sustainable Streams, LLC

Science · Service · Solutions

Geomorphic Stability Fundamentals

Stream Function Pyramid as a Framework for Stream Management

(Adapted from Harmon et al., 2012)

Streams Tend Toward Equilibrium

Stream Flow in Undeveloped Watershed

Double Lick Creek

1.8 square miles, 3% impervious

Outstanding State Resource Water

0.28" in 1 hour

0.43" in 2 hours

Stream Flow Downstream of Conventional Development

Sand Run 2.2 square miles, 29% impervious

Sand Run 08/28/2008 11:14

ALC: NO

and a

0.3" in 1 hour

06/10/2009 08:26

More Water = Larger Channels More Storm Water = Larger Urban Streams

Adapted from Smith et al. (Forthcoming, Freshwater Science)

Conventional Stormwater Designs → Unstable Streams

Stage 5 – Equilibrium

VW

Stage1 – Equilibrium

Channel Evolution Sequence in Response to Increased Flows from Urbanization, Adapted from Schumm et al. (1984) and Hawley et al. (2012)

Conventional Stormwater Designs → Unstable Streams

Middle Creek (3.3 mi²) 0.6% Impervious Owl Creek (3.7 mi²) 9% Impervious

Conventional Stormwater Designs → Unstable Streams

Owl Creek — Middle Creek Elevation (ft) ~3' ~9'

Station (ft)

Unstable Streams Impact Resources and Waste \$\$\$

- Aquatic habitat
- Water quality
- Private property
- Infrastructure

Why Are All Stormwater Investments Not Preventing Stream Erosion?

Historical Stormwater Management Has Not Been Protective of Aquatic Biodiversity

Data from 73 Northern Kentucky monitoring sites across a range of development styles, including peak matching detention/retention basins.

Figure from Hawley et al. (2016, Freshwater Science)

History of Stormwater Management

Analysis of the 2-yr, 2-hr storm from Fort Collins, CO by Bledsoe (2002), Journal of Water Resources Planning and Management

Pre ~1980s

Analysis of the 2-yr, 2-hr storm from Fort Collins, CO by Bledsoe (2002), Journal of Water Resources Planning and Management

Post ~1980 / ~2000

Analysis of the 2-yr, 2-hr storm from Fort Collins, CO by Bledsoe (2002), Journal of Water Resources Planning and Management

Post ~1980 / ~2000

Adapted from Hawley (2012)

0.3" in 1 hour

2.2 mi², 29% impervious 06/10/2009 08:26

Post ~2000 / ~2015

Adapted from Hawley (2012)

Post ~2000 / ~2015

Adapted from Hawley (2012)

Introduction of Q_{critical}

The Critical Discharge for Stream Bed Erosion

Post ~2000 to ~2015

Analysis of the 2-yr, 2-hr storm from Fort Collins, CO by Bledsoe (2002), Journal of Water Resources Planning and Management

Post ~2000 to ~2015

Analysis of the 2-yr, 2-hr storm from Fort Collins, CO by Bledsoe (2002), Journal of Water Resources Planning and Management

Conventional Detention = <u>More Erosion</u> than Pre-Developed Conditions

Excess Erosion of Streambed Can Lead to:

- Stream Deepening & Widening
- Water Quality Impacts
- Biological Disturbance

Increased Bed Erosion \rightarrow Incision (Downcutting)

Stage1 - Equilibrium

Stage 2- Incision

Incision \rightarrow Taller Banks \rightarrow Bank Failure

Stage1 - Equilibrium

Stage 2- Incision

Stage 3 - Widening

Bank Failure \rightarrow Widening

Stage1 - Equilibrium

Stage 2- Incision

Stage 3 - Widening

Stage 4- Aggradation

→Large Amounts of Erosion Before Returning to Equilibrium

Stage1 - Equilibrium

Stage 2- Incision

Stage 3 - Widening

Stage 4- Aggradation

Stage 5 - Equilibrium

Adapted from Schumm et al. (1984) and Hawley et al. (2012)

Achieving Q_{critical} Means that Storms ≤ 2-year No Longer Cause Stream Downcutting

- ✓ Protects Our Natural Resources
- ✓ Protects Our Infrastructure
- ✓ Protects Our Property
- ✓ Satisfies Regulations

How can New Detention BMPs be Designed for Stream Stability?

Q_{critical} Needs to Be Calibrated to Your Streams

R.J. Hawley et al. / Geomorphology 201 (2013) 111-126

Sediment Transport Regimes Vary By Stream/Region

First Step is to Calculate Q_{critical}

- Q_{critical} is calculated as a fraction of the undeveloped 2-year flow (Q₂)
- N.KY Q_{critical} typically
 ~0.4Q₂ to ~0.5Q₂
- SCS, Rational, and USGS Rural methods acceptable

Adapted from Hawley and Vietz (Forthcoming, Freshwater Science)

Model Existing & Proposed Conditions

1. Flood Control:

- Meet local flood criteria
- e.g., Post-development < Pre-development peak for 2- to 100-year events

2. Water Quality:

- Meet local water quality criteria
- e.g., first 0.8 inches
- 3. Channel Protection:
 - 2-year peak flow < Q_{critical}

Example: Bioretention Basin

Non-optimized Bioretention Basin

Step	Basin Type	Outlet Structure Optimized?	Basin Footprint (SF)	Estimated Excavation (CY)
1. Flood Control Only	Traditional DB	Yes	3,848	2,510
2. Flood/Water Quality	Bioretention	Yes	3,318	2,832
3. Flood/WQ/Q _{critical}	Bioretention	No	5,027	3,846

Poor Optimization from Flood Control and Water Quality Only

- ~50% larger footprint
- ~35% larger volume
- ~0.5 additional design hours

Optimized Bioretention Basin

Step	Basin Type	Outlet Structure Optimized?	Basin Footprint (SF)	Estimated Excavation (CY)
1. Flood Control Only	Traditional DB	Yes	3,848	2,510
2. Flood/Water Quality	Bioretention	Yes	3,318	2,832
3. Flood/WQ/Q _{critical}	Bioretention	Yes	3,318	2,832

Good Optimization to Meet Q_{critical}

- 0% larger footprint
- 0% larger volume
- 2 additional design hours

Bioretention Basin

Optimization of Outlet Control Structure

How can Detention Basins be Retrofitted for Stream Stability?

Retrofitting Existing Detention Basins Offers A Cost-effective Approach to Mitigate Existing Impacts

Strategy	Cost per Acre Treated	Notes	
Distributed GI	~\$50,000	King Co. (2013) pilot study	
Stream Restoration	~\$5,000	Equivalent of ~\$200-300 per foot	
New Detention	~\$3,000	Hawley et al., 2012	
Retrofit Detention	~\$500	"Detain H2O" (2019 Patent) ~\$10,000 installed	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Adapted from Hawley et al. (2017)

Lessons Learned from Previous Retrofit Studies

- Level of control that coincided with inducing geomorphic recovery:
 - Effectively managing ~25-50% of the impervious area
 - Effectively managing ~5-10% of the drainage area
- Timing of development that coincides with adequate freeboard for economical retrofits (*this will vary by community*):
 - "Recent imperviousness" e.g., imperviousness that was added between ~2001 and 2016 +/-
 - Helps to quickly find subwatersheds in GIS that may have lots of economical retrofits

Maintain Existing Level of Service

1. Flood Control

Contain same events within the basin as provided with original design

2. Water Quality?

- Many retrofitted basins were originally designed before water quality requirements
- Talk to the local regulating body
- 3. Channel Protection

Can Retrofitting Induce Stream Recovery? Lessons from a Pilot Retrofit

2013 Pilot Retrofit

Simple change to the outlet control structure

2013 Pilot Retrofit

- Restrict flows < Q_{critical} to the extent feasible
 - Q_{critical} = 0.38 m³/s (13.4 ft³/s)

TABLE 1. Modeled Peak Discharges (m^3/s) for the Respective 24-h Design Storms Predict that the Retrofit Device Reduces the Three-Month,
Six-Month, and One-Year Storms (bold text) Such That They No Longer Exceed the $Q_{critical}$ Design Target.¹

Return Period		Postdeveloped Conditions			
	Predeveloped Conditions	Detention Basin Inflow	Preretrofit Outflow	Postretrofit Outflow	
3-month	0.14	0.88	0.43	0.19	
6-month	0.34	1.26	0.51	0.22	
1-year	0.63	1.69	0.60	0.25	
2-year	0.95	2.12	0.67	0.47	
10-year	1.93	3.28	1.00	0.91	
25-year	2.58	3.97	1.22	1.11	
50-year	3.10	4.52	1.37	1.25	
100-year	3.67	5.10	1.50	1.40	

 ${}^{1}Q_{\text{critical}}$ estimated as 0.38 m³/s (40% of the predeveloped two-year flow).

Adapted from Hawley et al. (2017)

Post-retrofit outflow:

All design storms < pre-retrofit outflow

3-mo, 6-mo, and 1-yr storms < Q_{critical}

2013 Pilot Retrofit

Post-installation Monitoring

Restoration of Both High and Low Flows

Adapted from Hawley et al. (2017)

Restoration of Baseflows Supports Ecological "Lift"

~Dozen native minnows in 1st pool immediately downstream of the outfall on 9/16/16 (2 circled). Flow was evident coming out of the basin despite the dry/hot week

Restricted High Flows Reduces Streambed Erosion

→ Improved Bank Stability & Habitat in Spur

Wood retention and increasing channel complexity (beginning to establish meandering low-flow channel)

Bench development at toe of formerly eroding bank

8/26/13 Looking upstream

7/8/19 Looking upstream

Adapted from Hawley (2022), Urban Ecosystems

→ Improved Bank Stability & Habitat Downstream

4/29/13 Looking downstream

7/8/19 Looking downstream

Adapted from Hawley (2022), Urban Ecosystems

Downstream Improvements Captured by Channel Surveys

Inflow2 Inflow1 A Site Rain Gage Outflow Downstream Upstream

Adapted from Hawley et al. (2020)

→ Worsening Stability & Habitat Upstream (Control Site)

8/26/13 Looking downstream

7/8/19 Looking downstream

Adapted from Hawley (2022), Urban Ecosystems

Inflow2

Outflow

Inflow1

🛆 Site Rain Gage

Habitat Recovery

Response to Increased Flows from Urbanization, Adapted from Schumm et al. (1984) and Hawley et al. (2012)

Spur Site

Downstream Site Adapted from Hawley (2022), Urban Ecosystems

Adaptive Management, Including Monitoring, Is Highly Recommended

 Trajectories of geomorphic recovery should be visually apparent

 \rightarrow simple photo station monitoring can be an effective monitoring approach

Adapted from Hawley (2022)

Proactive Efforts Can Prevent Future Problems

- Include Channel Protection Considerations on Projects
- Optimize Rules and Regulations for New and Redevelopment
- Locate Watersheds for Cost-effective Retrofit Implementation

Questions?